Sender Authentication Technology Update

Steven M Jones
Executive Director, DMARC.org
Senior Software Engineer, LinkedIn
http://linkedin.com/in/stevenmjoness

JPAAWG 2nd General Meeting
ベルサール飯田橋ファースト B1F
2019.11.14
Session A7, Hall A
Topics

- Why Do We Focus On Sender Authentication?
- Standards and Protocols
- DMARC Use Update
- Common Problems With DMARC Records
Why Do We Focus On Sender Authentication?

- Easier To Identify Legitimate Email
- Best Practices = Better Delivery
- Undelivered Mail = Wasted ¥

- Criminals Exploit Email Effectively
 - Phishing is #1 Cause - Data Breach
 - Business Email Compromise

Easier Detection, Better Protection

From: Netflix <Netflix@Netflix.com>
Authentication-Results: X0C.XXXX.com/XACJ8inv058374;
 dmarc=fail (p=reject dis=none) header.from=Netflix.com
Authentication-Results: X0C.XXXX.com; spf=fail smtp.mailfrom=Netflix@Netflix.com
Authentication-Results: X0C.XXXX.com; dkim=pass (2048-bit key; unprotected)
 header.d=uttarauniversity.edu.bd header.i=溆@uttarauniversity.edu.bd
 header.b=kU8F/hqO

- Consistent authentication makes your legitimate email stand out, easy to model
- Machine Learning leverages this to detect cousin domains / “display name” attacks
Standards and Protocols
Overview of Common Protocols

- Sender Policy Framework (SPF)
 RFC 7208
- Domain Keys Identified Message (DKIM)
 RFC 6376
- Domain-based Message Authentication, Reporting & Conformance (DMARC)
 RFC 7489
- Authenticated Received Chain (ARC)

SPF – http://www.open-spf.org
DKIM – http://dkim.org
DMARC – https://dmarg.org
ARC – http://arc-spec.org
<table>
<thead>
<tr>
<th>Refining Protections Over Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPF: Combat “backscatter” from spamming 2002 – 2004</td>
</tr>
<tr>
<td>- Left header From: unprotected</td>
</tr>
<tr>
<td>- Easily misconfigured, rarely enforced</td>
</tr>
<tr>
<td>DKIM: Protect header From:, message forgery 2004 – 2007</td>
</tr>
<tr>
<td>- No accepted policy mechanism</td>
</tr>
<tr>
<td>- Third-party signatures problematic</td>
</tr>
<tr>
<td>DMARC: Has policy mechanism, enforced at ISP 2009 - 2015</td>
</tr>
<tr>
<td>- Cousin domains and “display name” attacks</td>
</tr>
<tr>
<td>- Problems with mailing lists, forwarding</td>
</tr>
</tbody>
</table>
Example of an Indirect Mail Flow

- Intermediary sends the message from a new IP address, causing SPF to fail to verify for Sender’s domain
- Intermediary changes the message contents (subject:), causing Sender’s DKIM signature to fail to verify
ARC is being developed by the IETF DMARC working group
See
https://datatracker.ietf.org/wg/dmarc/

Usage Guide:

More information at http://arc-spec.org
ARC Published As RFC 8617 on 2019.07.09
ARC Implementations

- FastMail, Google, Microsoft – hosted email services
- Cloudmark, Halon, MailerQ and MessageSystems (SparkPost) – Mail Transfer Agent (MTA)
- Mailman and Sympa - Mailing List Manager (MLM)
- Free Software – dkimpy, Mail::DKIM, OpenARC
- More at arc-spec.org → Resources

ARC being developed by the IETF DMARC working group
See
https://datatracker.ietf.org/wg/dmarc/
Microsoft and ARC

• 2019.10.24 – Announces ARC support on Microsoft 365 Roadmap
• Testing in May 2019
• Began using production key in July
• Messages from many Office 365 tenants sent with ARC headers since July

Microsoft logo image obtained from Wikimedia
Looking For Users of ARC

- ARC supports mailing lists – look there
- arc-discuss@dmarc.org mailing list
 - First message 2018.01.31 from an OpenARC user
 - 8.6% of posts have included an ARC Seal
- IETF’s ietf@ietf.org mailing list
 - First message 2019.06.25 from Office 365 customer
 - 4.7% of posts have included an ARC Seal

ARC Discussion list:
http://lists.dmarc.org/mailman/listinfo/ar
c-discuss

IETF lists can be found at
https://www.ietf.org/how/lists
ietf@ietf.org list:
https://www.ietf.org/mailman/listinfo/ietf
RFC 8616: Email Authentication for Internationalized Mail

- Use of Unicode characters in domains and email addresses has been evolving
- RFC 8616 updates the core SPF, DKIM and DMARC specifications to clarify which form of Internationalized Domain Name (IDN) each uses
- Published on 2019.06.30

DMARC and Public Suffix Domains

- Allow for DMARC to be applied at ccTLD, like .uk or .jp
- Also cover intermediate domains, ex. gov.uk
- Allow TLDs to have a DMARC policy for non-existent domains, ex. nodomain.gov.uk
- Proposed at M³AAWG 44 (Brooklyn) in 2018.10
- Several revisions in the IETF DMARC Working Group
- Nearing publication (as of November 2019)

PSD draft:
Shorter DKIM keys should be easier for small domains to publish in DNS without errors – see issues with 2,048 bit keys being too long for some DNS software/services.
Quantum Computing and Encryption

- 2019.10.23 – Google claims “Quantum Supremacy”
- What are the implications for traditional cryptography
- M3AAWG 46 (Montreal) had sessions on this topic
- Impacts most online activity, communications
- Directly impacts DKIM and ARC; indirectly DMARC
- How quickly can the IETF address this issue?

Google announcement: https://www.blog.google/technology/ai/computing-takes-quantum-leap-forward/
The Verge article on same: https://www.theverge.com/2019/10/23/20928294/google-quantum-supremacy-sycamore-computer-qubit-milestone
Note that JIPDEC, Yahoo Japan, and GMX.de / 1&1 have been doing this for some time

DMARC Use Update
Farsight Security DNS Data

- Sensors located at network providers around the world
- Response data – the answer – is timestamped and stored
- Sensors only see records when somebody looks them up

- DMARC.org only includes valid records still published in DNS, and are tracked by when they were first published
 - The set of active records changes over time
~194,000 in August 2017, ~75% increase
This graph shows 4.4MM active DMARC records as of 9/30/2019
3 Million New DMARC Records?

- Millions of DMARC records with strange names
 - _dmarc.mx.mx.mx.mx.mx.ichiban.example.com
- Most appear to trace back to “X”
- Nobody was aware of “X” behaving badly
- Exclude these records for now…
Current ending figure is 1.37MM active DMARC records
Policy Breakdown of Active DMARC Records

2018.12.31

- p=reject: 27.9%
- p=quarantine: 6.6%
- p=none: 65.5%

2019.09.30

- p=reject: 21.0%
- p=quarantine: 6.7%
- p=none: 72.4%
Active DMARC Records in Euro ccTLDs

Data provided by Farsight Security
Graph © 2019 Trusted Domain Project
DMARC Records Increase 2.5x Year-over-Year

- Cumulative counts confirmed in DNS for the periods ending
- Robust growth
- Nearly doubled in 2H2018 alone
- Excluding 5MM suspicious records created in 4Q2018

Raw Data: Farsight Security Analysis: DMARC.org

Provided to a colleague for a session at M3AAWG 44 in San Francisco, February 2019
Common Problems with DMARC Records
Problems with DMARC Records

- 2012-2016: 489,000 bad TXT records (_dmarc...)
- 2017-2019: 446,000 bad TXT records
- Many are non-DMARC “wildcard” records
 - 76,000 bio=<base64>
 - 42,000 google-site-verification
 - 25,000 v=dmarc1 (must be v=DMARC1)
 - 11,000 MS=ms[0–9]*

2019 Q4 data – 3.8MM data records representing 96MM DNS responses
Problems with DMARC Records

- Many bad records are formatting issues in rdata
 - \\”v=DMARC1
 - v= DMARC1 ...
 - V-DMARC
 - Value: V=DMARC1; ...
 - _dmarc... IN TXT \\”v=DMARC1 ...
Problems (?) with DMARC Records

- Policy records with no reporting address
 - “v=DMARC1; p=none”
 - p=reject and no reporting, may be intentional
 - p=none and no reporting…?
 - p=none intended to generate reports
 - Does this really qualify as deploying DMARC?

Example – NetEase has a “v=DMARC1; p=none” policy published for 126.com and 163.com, not clear why
Problems with DMARC Records

- Bad mailto: URIs in published policy
 - rua=mailto:devops
 - rua=mailto:rua [] example.com
 - rua=user@domain not rua=mailto:...
- Not just missing reports, may harass reporter
- Potential privacy violations
Verifying 3rd Party Report Receivers

- Domain owners publish *authorizing records* under RFC 7489 Section 7.1
 - `foo.com` wants DMARC reports sent to `bar.com`
 - `_dmarc.foo.com = “rua=mailto:foo@bar.com”`
 - `foo.com._report._dmarc.bar.com = “v=DMARC1”`

- Report generators are not checking
- Big privacy and legal implications
Q&A
“Why Do Your Numbers Change?”
Only 62,000 ending same quarter in 2016
~75% increase from August 2017
Farsight Security DNS Data

• Sensors located at network providers around the world
• Response data – the answer – is timestamped and stored
• Sensors only see records when somebody looks them up

• DMARC.org only includes valid records still published in DNS, and are tracked by when they were first published
 • The set of active records changes over time
Why Do The Counts Change Over Years?

- ichi.com and ni.com publish DMARC records during 2015
- They are both still published as of 2015.12.31, so the total for 2015 as of 2015.12.31 is 2
- During 2016 ni.com removes its DMARC record, but san.com publishes a DMARC record
- The total for 2015 as of 2016.12.31 is 1, and the count for 2016 as of 2016.12.31 is 1.
- During 2016 ichi.com removes its DMARC record
- The count for 2015 as of 2017.12.31 is 0, and the count for 2016 is 1
Concrete Example

- As of 2017.09.30: We reported 66,321 DMARC records for 2016.12.31
- As of 2018.06.30: We reported 54,315 DMARC records for 2016.12.31
- 12,006 records that were active during the 2017.09.30 validation were no longer active during the 2018.06.30 validation
- Since they were no longer in DNS, they are not included in the 2016 total for the 2018 report
ありがとうございました
Thank you