Authenticated Received Chain Overview

DMARC.org
Introduction to DMARC.org

The mission of DMARC.org is to promote the use of DMARC and related email authentication technologies to reduce fraudulent email, in a way that can be sustained at Internet scale. This overall goal is met by educating individuals and organizations through a combination of articles, tutorials, and presentations.

For more information, please visit https://dmarc.org

DMARC.org is an initiative of the non-profit Trusted Domain Project (TDP). For more about TDP, please visit http://trusteddomain.org

The contents of this presentation are released under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA).
Introduction to DMARC.org

The work of DMARC.org is made possible through the generous support of these companies:

Sponsors

Supporters
Background
What Was Done Before ARC?

• Previous work had been done on a header to convey authentication results between domains (ADMDs)

• Original Authentication Results (OAR) was published as an Internet Draft in February 2012

• Assumes trust between ADMDs – not widely used

• Some large enterprises used it internally

• Might address issue some domains using DMARC experienced with indirect mailflows
Connection Between ARC and DMARC

• Domains with strict DMARC policies ($p=reject$) may see legitimate messages blocked if they go through *indirect mailflows* such as mailing lists, forwarding, or filtering services

• Forwarding causes SPF to fail even if origin was legit

• Forwarders often alter messages, breaking DKIM
 • Disclaimers and footers
 • Virus scan results
 • Removed attachments
 • Mailing list subject tags
Example of an Indirect Mailflow

- Intermediary sends the message from a new IP address, causing SPF to fail to verify for Sender’s domain
- Intermediary changes the message contents, causing Sender’s DKIM signature to fail to verify
Why Was ARC Created?

• Indirect mailflows always posed this challenge with DMARC – what changed?

• In April 2014, AOL and Yahoo published a p=reject DMARC policy for their customer-use domains

• While this affected less than 1% of their customers’ email, there was significant disruption for many users of indirect mailflows

• Ad hoc working group formed to adapt OAR to address these disruptions of indirect mailflows

• Significant changes required for a general solution, so a new name was chosen
Design Decisions for ARC

• Originator of message makes no changes

• Convey the Authentication-Results: content intact from the first ARC intermediary forward

• Allow for multiple “hops” in the indirect mailflow

• ARC headers can be verified at each hop

• Work at Internet scale

• Define ARC independently of DMARC if possible
Design Decisions for ARC

• Message recipient seeing an authentication failure under DMARC may choose to check ARC headers

• If ARC headers are intact, they can see and validate Authentication-Results: content reported by the ARC participants

• Depending on reputation of intermediary/-ies and results, message recipient *may* choose to use ARC information as basis for a “local override” of authentication checks like DMARC
What Does ARC Do?

• Intact ARC chains give you:
 • DKIM, DMARC and SPF results as seen by first “hop”
 • Signatures showing these results were conveyed intact
 • Signatures from participating intermediaries can be reliably linked to their domain name

• Allows intermediaries to alter message with attribution

• ARC can provide data on intermediaries to a reputation system tracking their behavior
What Doesn’t ARC Do?

• Does not say anything about “trustworthiness” of the message sender or intermediaries

• Says nothing about the contents of the message

• Intermediaries might still inject bad content

• Intermediaries might remove some or all ARC headers
Implementation
Three New Header Fields

• **ARC-Authentication-Results**: (AAR)
 Archived copy of Authentication-Results:

• **ARC-Seal**: (AS)
 Includes some tags and a DKIM-style signature of any preceding ARC headers/sets

• **ARC-Message-Signature**: (AMS)
 A DKIM-style signature of the entire message except ARC-Seal: headers
ARC-Authentication-Results: (AAR)

• Copy/consolidation of the contents of the locally generated Authentication-Results: header

• One addition – the i= tag is prepended, containing a sequence number for the current set of ARC headers
ARC-Message-Signature: (AMS)

• A modified DKIM signature – leverages existing libraries

• $i =$ tag is different – under ARC, a sequence number for ARC header sets

• $v =$ tag is missing in ARC

• Should not be usable as a DKIM signature in a replay attack
ARC-Seal: (AS)

• Populated with *key=value* pairs
• **b=** is a signature of all ARC headers, no non-ARC hdrs
• **a=/d=/s=** fields match the corresponding DKIM tags
 • Same key format and DNS records as for DKIM
 • Can use your DKIM keys for ARC
 • Can use separate keys per local policy or preference
• **cv=** indicates whether ARC chain validated as received by the reporting intermediary
• **i=** tag is a sequence number for ARC header sets

Copyright © 2016 by The Trusted Domain Project
Order of Insertion

• Authentication-Results: content is copied into a new ARC-Authentication-Results: header, prefixed to the message

• ARC-Message-Signature: is calculated for message, including newest AAR header, and prefixed to the message
 • Must not include any ARC-Seal: headers

• ARC-Seal: is calculated and prefixed

• ARC headers prefixed per common practice, but order of appearance is not critical for validation
The $i=\text{Sequence Number}$

The $i=$ sequence tag is used to order the ARC headers for various operations

• Allows multiple ARC header sets to be grouped easily and correctly

•Eliminates reliance on the order of headers being inserted – or not being altered

•Compare with order of insertion of various authentication, content scanning, or Received: headers
What Constitutes A Valid ARC Chain

Method used by each participant to determine the \texttt{cv=} value in their \texttt{ARC-Seal}:

- All \texttt{ARC-Seal:} headers must validate
- The \texttt{cv=} value for those AS headers must be Pass
- The most recent \texttt{ARC-Message-Signature:} (highest \texttt{i=} value) must validate
When Would I Insert ARC Headers?

• When a message is subject to handling that will knowingly break existing DKIM signatures
 • Inserting *Subject: tags*
 • Appending disclaimers and footers
 • Stripping attachments
 • Content-encoding changes

• When the message crosses a trust boundary, which might occur exiting an ADMD
 • Sometimes within, e.g. a multi-department or multi-entity enterprise
Different organizations will have different configurations, but still check ARC on inbound messages and insert ARC when messages are outbound.
When Wouldn’t I Insert ARC Headers?

• When the message will be delivered to a mailbox within the local organization (ADMD)

• ARC builds a verifiable chain of intermediate message handlers – anonymous remailers might not find this desirable...?
What Do ARC Headers Look Like?

<table>
<thead>
<tr>
<th>Origin</th>
<th>Mailing List</th>
<th>Hop 2</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic message headers, DKIM-Signature</td>
<td>Checks auth; Adds Auth-Results:, DKIM-Signature, ARC headers, Subject tag</td>
<td>Checks auth; Adds Auth-Results:, DKIM-Signature, ARC headers</td>
<td>Checks auth; Unpacks ARC headers; adds Auth-Results:</td>
</tr>
</tbody>
</table>

DKIM-Sig:
- To:
- From:
- Subject: [List]

ARC-Seal: i=1
ARC-Msg-Sig: i=1
ARC-Auth-Res: i=1

DKIM-Sig:
- To:
- From:
- Subject: [List]

ARC-Seal: i=2
ARC-Msg-Sig: i=2
ARC-Auth-Res: i=2

DKIM-Sig:
- To:
- From:
- Subject: [List]

ARC-Seal: i=1
ARC-Msg-Sig: i=1
ARC-Auth-Res: i=1

DKIM-Sig:
- To:
- From:
- Subject: [List]

Auth-Results: arc=...
ARC-Seal: i=2
ARC-Msg-Sig: i=2
ARC-Auth-Res: i=2
DKIM-Sig:
- To:
- From:
- Subject: [List]

Copyright © 2016 by The Trusted Domain Project
What Do They Really Look Like?

X-Received: by 20.30.40.11 with SMTP id u204mr8130724ywa.51.1466170851933; Fri, 17 Jun 2016 06:40:51 -0700 (PDT)
ARC-Seal: i=1; a=rsa-sha256; t=1466170851; cv=none;
d=example.com; s=arctest;
b=xe+jRguPNi5h5fostEt70srGic+UDHg9ZEn0M/lVyuT+vamXYq+ajRzeoHzkIQQ
qRgpka375Th/wZBCWFYyByFYt17kv/s/0w5TesTSYXxx0tO2uGeGoyeq2ekXEEdL2z3uxTC
CKIYTAmH7454+a/TVW7tsm6LlvW50b8w2M10vN59hSFOA8bLXg4hEAHPk2xm0xW+6f0HAcYIpKAcF52WrdCKU5rGlI+3bVj8mKaHFu+2TCha9N6bubnR0LqmPKJ64Nk5Hg3
LvHAf4fRSazTb1TpdM3n0bEln/mhek1GwUTtsT103viMbKbu58iz2oN+U2rz9HcAXC3S
nem==

ARC-Message-Signature: i=1; a=rsa-sha256; d=example.com; s=arctest;
h=auto-submitted:subject:from:to:date:message-id:arc-authentication-results;
bh=5BoDhYVbcbDA0VNnqngjXHj9j24qgA3V1CMwijd10==
b=2iotKbPydBaJ6yyAs3/7gcJSbunGYPnN7GH31Bs9NFU0FTmkikODOr6KvkHvUyzU7Baf3WoCoDCuIcsP1AK/cC0xxyJ5xshuyOhSe335/Xe8EzWHi34w/WliQsFjdI+CMDbN
ww/7GusCRV3zSHLlVQk31dLbAlDrPsMSs6J8Xtw0ytJvkrWJWhk+L0kQL7U9h8qHhQZ
AsJ9plKBkzVhi1+RCCc1qkDXzNraSVZz48LYK8m7t9VQhQqJLnXb9OtcrxrMtzw13FQv0x
qPddkAGzL8FwvFzo/U1Ga3Bwq4e6EzmdOIcWcnJ/9Bpy8ZLa30b2ra3YVx0NN3hvoJFg
uT5Q==

ARC-Authentication-Results: i=1; mx.example.net;
spf=pass (example.net: domain of kurta+arc@example.org designates 10:20:30:40::1 as
permitted sender) smtp.mailfrom=kurta+arc@example.org;
dmarc=pass (p=NONE dis=NONE) header.from@example.org;
arc=none

X-Received: by 10.20.30.100 with SMTP id 14mr2422268wjf.118.1466170851297; Fri, 17 Jun 2016 06:40:51 -0700 (PDT)
Return-Path: <kurta+arc@example.org>
Received: from mango.example.org (mango.example.org. [10:20:30:40::1])
by mx.example.net with ESMTP id f67si23622388wmf.85.2016.06.17.06.40.50
for <arc-mod-subject@example.com>
Fri, 17 Jun 2016 06:40:50 -0700 (PDT)
How Are ARC Verdicts Shown?

• arc=pass or arc=fail may be inserted into Authentication-Results: headers

• DMARC-aware receivers who validate ARC results should include ARC information in DMARC aggregate reports, local_policy section:

```html
<reason>
  <type>local_policy</type>
  <comment>arc=pass ams=d1.example d=d1.example,d1.example</comment>
</reason>
```

• ams= is the d= domain from the last AMS header
• d= is the list of d= domains from validated ARC-Seal:
Summary
Benefits of ARC

Sender/Intermediary Benefits

- Allow intermediaries to continue and/or resume traditional *From:* semantics, message modifications
- Allow more senders to adopt strict DMARC policies, block more fraudulent messages
- Improves overall deliverability

Receiver Benefits

- Less stress for receivers who enforce DMARC policies
- Allow more mailbox providers to publish strict DMARC policies on their customer-facing domains
- More data for reputation system(s)
ARC Timeline

• October 2015:
 • Announcement at M³AAWG 35 in Atlanta, draft docs published

• Fall 2015 – Spring 2016:
 • AOL, GMail, and OpenARC implementations: initial development

• March-April 2016
 • Updates to the specification

• June 2016
 • ARC specification & usage docs adopted by IETF DMARC WG

• February - October 2016
 • Periodic interoperability tests

• 4Q 2016
 • Initial public releases of open source code anticipated
ARC Resources

• Website for latest ARC news: http://arc-spec.org

• Mailing List for discussion of ARC: http://lists.dmarc.org/mailman/listinfo/arc-discuss

• Specification, current draft: https://tools.ietf.org/wg/dmarc/draft-ietf-dmarc-arc-protocol/

• Usage Guidelines, current draft: https://tools.ietf.org/wg/dmarc/draft-ietf-dmarc-arc-usage/
Questions