Authenticated Received Chain Overview

DMARC.org
The mission of DMARC.org is to promote the use of DMARC and related email authentication technologies to reduce fraudulent email, in a way that can be sustained at Internet scale. This overall goal is met by educating individuals and organizations through a combination of articles, tutorials, and presentations.

For more information, please visit https://dmarc.org

DMARC.org is an initiative of the non-profit Trusted Domain Project (TDP). For more about TDP, please visit http://trusteddomain.org

The contents of this presentation are released under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA).
Introduction to DMARC.org

The work of DMARC.org is made possible through the generous support of these companies:

Sponsors

Supporters
Background
What Was Done Before ARC?

• Previous work had been done on a header to convey authentication results between domains (ADMDs)

• Original Authentication Results (OAR) was published as an Internet Draft in February 2012

• Assumes trust between ADMDs – not widely used

• Some large enterprises used it internally

• Might address issue some domains using DMARC experienced with indirect mailflows
Connection Between ARC and DMARC

• Domains with strict DMARC policies ($p=\text{reject}$) may see legitimate messages blocked if they go through indirect mailflows such as mailing lists, forwarding, or filtering services.

• Forwarding causes SPF to fail even if origin was legit.

• Forwarders often alter messages, breaking DKIM:
 • Disclaimers and footers
 • Virus scan results
 • Removed attachments
 • Mailing list subject tags
Example of an Indirect Mailflow

- Intermediary sends the message from a new IP address, causing SPF to fail to verify for Sender’s domain
- Intermediary changes the message contents, causing Sender’s DKIM signature to fail to verify
Why Was ARC Created?

• In April 2014, AOL and Yahoo published a `p=reject` DMARC policy for their customer-use domains.

• While this affected less than 1% of their customers’ email, there was significant disruption for many users of indirect mailflows.

• Ad hoc working group formed to adapt OAR to address these disruptions of indirect mailflows.

• Significant changes required for a general solution, so a new name was chosen.
Design Decisions for ARC

• Originator of message makes no changes

• Convey the Authentication-Results: content intact from the first ARC intermediary forward

• Allow for multiple “hops” in the indirect mailflow

• ARC headers can be verified at each hop

• Work at Internet scale

• Define ARC independently of DMARC if possible
Design Decisions for ARC

• Message recipient seeing an authentication failure under DMARC may choose to check ARC headers

• If ARC headers are intact, they can see and validate Authentication-Results: content reported by the first ARC participant

• Depending on reputation of intermediary/-ies and results, message recipient *may* choose to use ARC information as basis for a “local override” of authentication checks like DMARC
What Does ARC Do?

• Intact ARC chains give you:
 • DKIM, DMARC and SPF results as seen by first “hop”
 • Signatures showing these results were conveyed intact
 • Signatures from participating intermediaries can be reliably linked to their domain name

• Allows intermediaries to alter message with attribution

• ARC can provide data on intermediaries to a reputation system tracking their behavior
What Doesn’t ARC Do?

- Does not say anything about “trustworthiness” of the message sender or intermediaries

- Says nothing about the contents of the message

- Intermediaries might still inject bad content

- Intermediaries might remove some or all ARC headers
Implementation
Three New Header Fields

• **ARC-Authentication-Results**: *(AAR)*
 Archived copy of Authentication-Results:

• **ARC-Seal**: *(AS)*
 Includes some tags and a DKIM-style signature of any preceding ARC headers/sets

• **ARC-Message-Signature**: *(AMS)*
 A DKIM-style signature of the entire message except ARC-Seal: headers
ARC-Authentication-Results: (AAR)

• Copy of the contents of the locally generated Authentication-Results: header

• One addition – the i= tag is prepended, containing a sequence number for the current set of ARC headers
ARC-Message-Signature: (AMS)

• A modified DKIM signature – leverages existing libraries

• $i=$ tag is different – under ARC, a sequence number for ARC header sets

• $v=$ tag is missing in ARC

• Should not be usable as a DKIM signature in a replay attack
ARC-Seal: (AS)

- Populated with *key=value* pairs
- b= is a signature of all ARC headers, no non-ARC hdrs
- a=/d=/s= fields match the corresponding DKIM tags
 - Same key format and DNS records as for DKIM
 - Can use your DKIM keys for ARC
 - Can use separate keys per local policy or preference
- cv= indicates whether ARC chain validated as received by the reporting intermediary
- i= tag is a sequence number for ARC header sets
Order of Insertion

• Authentication-Results: content is copied into a new ARC-Authentication-Results: header, prefixed to the message
• ARC-Message-Signature: is calculated for message, including newest AAR header, and prefixed to the message
 • Must not include any ARC-Seal: headers
• ARC-Seal: is calculated and prefixed
• ARC headers prefixed per common practice, but order of appearance is not critical for validation
The \textit{i= Sequence Number}

The \textit{i=} sequence tag is used to order the ARC headers for various operations

\begin{itemize}
 \item Allows multiple ARC header sets to be grouped easily and correctly
 \item Eliminates reliance on the order of headers being inserted – or not being altered
 \item Compare with order of insertion of various authentication, content scanning, or \texttt{Received:} headers
\end{itemize}
What Constitutes A Valid ARC Chain

Method used by each participant to determine the \(cv = \) value in their ARC-Seal:

• All ARC-Seal: headers must validate

• The \(cv = \) value for those AS headers must be Pass

• The most recent ARC-Message-Signature: (highest \(i = \) value) must validate
When Would I Insert ARC Headers?

• When a message is subject to handling that will knowingly break existing DKIM signatures
 • Inserting *Subject: tags*
 • Appending disclaimers and footers
 • Stripping attachments
 • Content-encoding changes

• When the message crosses a trust boundary, which might occur exiting an ADMD
 • Sometimes within, e.g. a multi-department or multi-entity enterprise
When Would I Insert ARC Headers?

Different organizations will have different configurations, but still check ARC on inbound messages and insert ARC when messages are outbound.
When Wouldn’t I Insert ARC Headers?

• When the message will be delivered to a mailbox within the local organization (ADMD)

• ARC builds a verifiable chain of intermediate message handlers – anonymous remailers might not find this desirable...
What Do ARC Headers Look Like?

Origin
Basic message headers, DKIM-Signature

DKIM-Sig:
To:
From:
Subject:
.
.
.

Mailing List
Checks auth; Adds Auth-Results:, DKIM-Signature, ARC headers, Subject tag

ARC-Seal: i=1
ARC-Msg-Sig: i=1
ARC-Auth-Res: i=1
DKIM-Sig:
Auth-Results:
DKIM-Sig:
To:
From:
Subject: [List]
.
.
.

Hop 2
Checks auth; Adds Auth-Results:, DKIM-Signature, ARC headers

ARC-Seal: i=2
ARC-Msg-Sig: i=2
ARC-Auth-Res: i=2
DKIM-Sig:
Auth-Results:
ARC-Seal: i=1
ARC-Msg-Sig: i=1
ARC-Auth-Res: i=1
DKIM-Sig:
Auth-Results:
DKIM-Sig:
To:
From:
Subject: [List]
.
.
.

Destination
Checks auth; Unpacks ARC headers; adds Auth-Results:

Auth-Results: arc=...
ARC-Seal: i=2
ARC-Msg-Sig: i=2
ARC-Auth-Res: i=2
DKIM-Sig:
Auth-Results:
ARC-Seal: i=1
ARC-Msg-Sig: i=1
ARC-Auth-Res: i=1
DKIM-Sig:
Auth-Results:
DKIM-Sig:
To:
From:
Subject: [List]
.
How Are ARC Verdicts Shown?

• **arc=pass** or **arc=fail** may be inserted into Authentication-Results: headers

• DMARC-aware receivers who validate ARC results should include ARC information in DMARC aggregate reports, local_policy section:

 `<reason>
 <type>local_policy</type>
 <comment>arc=pass ams=d1.example d=d1.example,d1.example</comment>
 </reason>`

- **ams** = is the **d** = domain from the last AMS header
- **d** = is the list of **d** = domains from validated ARC-Seal:
Summary
Benefits of ARC

Sender/Intermediary Benefits

• Allow intermediaries to continue or resume traditional From: semantics, message modifications

• Allow more senders to adopt p=reject DMARC policies, blocking fraudulent messages

• Improves overall deliverability

Receiver Benefits

• Allow more receivers to enforce DMARC policies

• More data for reputation systems

• Allow more mailbox providers to publish p=reject policies on their customer-facing domains
ARC Timeline

• October 2015:
 • Announcement at M³AAWG 35 in Atlanta
 • Draft specification and usage doc published as IETF Internet-Drafts

• Fall 2015 – Spring 2016:
 • AOL, GMail, and OpenARC implementations developed

• February 2016
 • Interoperability event #1

• March-April 2016
 • Updates to the specification

• May 2016
 • Interoperability event #2

• June-July 2016
 • Interoperability event #3
ARC Resources

• Website for latest ARC news: http://arc-spec.org

• Mailing List for discussion of ARC: http://lists.dmarc.org/mailman/listinfo/arc-discuss

Questions